
IEEE TRANSACTIONS ON RELIABILITY 1

Benchmarking Static Analysis Tools for Web
Security

Paulo Nunes, Ibéria Medeiros, Member, IEEE, José Fonseca, Nuno Neves, Member, IEEE, Miguel Correia,
Senior Member, IEEE, Marco Vieira, Member, IEEE

Abstract—Static analysis tools are recurrently used by devel-
opers to search for vulnerabilities in the source code of web
applications. However, distinct tools provide different results
depending on factors such as the complexity of the code under
analysis and the application scenario, thus missing some of the
vulnerabilities while reporting false problems. Benchmarks can
be used to assess and compare different systems or components,
however, existing benchmarks have strong representativeness lim-
itations, disregarding the specificities of the environment where
the tools under benchmarking will be used. In this paper, we
propose a benchmark for assessing and comparing static analysis
tools in terms of their capability to detect security vulnerabilities.
The benchmark considers four real-world development scenarios,
including workloads composed by real web applications with
different goals and constraints, ranging from low budget to high-
end applications. Our benchmark was implemented and assessed
experimentally using a set of 134 WordPress plugins, which
served as basis for the evaluation of five free PHP static analysis
tools. Results clearly show that the best solution depends on the
deployment scenario and class of vulnerability being detected,
therefore highlighting the importance of these aspects in the
design of the benchmark and of future static analysis tools.

Index Terms—benchmarking; security metrics; static analysis
tools; vulnerability detection

ABBREVIATION AND ACRONYMS

AST Abstract Syntax Tree
BAS Benchmark Accuracy Score
BSA Benchmark for Security Automation
Bugtraq Electronic mailing list dedicated to issues about

computer security
CCN Cyclomatic Complexity Number
CCN2 Extended Cyclomatic Complexity Number
CVE Common Vulnerability Enumeration
DR Discrimination Rate
FN False Negative
FP False Positive
FPR False Positive Rate

Paulo Nunes and José Fonseca are with the Research Unit for the Devel-
opment of the Interior (UDI) of the Polytechnic Institute of Guarda, Portugal,
and the Centre of Informatics and Systems of the University of Coimbra,
Portugal (CISUC) (e-mail: pnunes@ipg.pt, josefonseca@ipg.pt).

Ibéria Medeiros and Nuno Neves are with the LaSIGE, Faculdade de
Ciências, Universidade of Lisboa, Portugal (email: imedeiros@di.fc.ul.pt;
nuno@di.fc.ul.pt,)

Miguel Correia is with INESC-ID, Instituto Superior Técnico, Universidade
of Lisboa, Portugal (email: miguel.p.correia@ist.utl.pt)

Marco Vieira is with the Department of Informatics Engineering, University
of Coimbra, Portugal (email:mvieira@dei.uc.pt)

Manuscript received January 8, 2018; revised MMMM DD, YYYY.

LOC Lines of Code
LLOC Logical Lines of Code
N Negative instances
NIST National Institute of Standards and Technology
NVLOC Non-vulnerable LOC
OOP Object-Oriented Programming
OWASP Open Web Application Security Project
P Positive instances
PoC Proof of Concept
POP Procedure oriented programming
SAMATE Software Assurance Metrics and Tool Evaluation
SAT Static Analysis Tool
SCM Source Code Metrics
SIG Software Improvement Group
SPP Software Product Properties
SQLi SQL Injection
SS Sensitive Sink
SwMM Software Measures and Metrics
RSV to Reduce Security Vulnerabilities
TN True Negative
TP True Positive
TPR True Positive Rate
TViT TV Informationstechnik GmbH
VLOC Vulnerable LOC
WPVD WordPress Vulnerability Database
WPVD WPScan Vulnerability Database
XSS Cross Site Scripting

I. INTRODUCTION

Web applications have the remarkable ability to be quickly
deployable and instantly accessible to millions of users. They
bring competitive benefits to most business areas, and there-
fore, the demand for new web applications with complex
features is increasing fast. Since their development is often
carried out under tight schedules, this can lead to many bugs
and security problems. Thus, with no surprise, an Acunetix
survey states that 60% of the vulnerabilities found are in web
applications [1]. When exploited, their impact may have severe
consequences for organizations, including financial losses,
liability problems, brand damage and loss of market share [2].

Static analysis is one of the most important activities to
discover bugs in the early stages of the software development
lifecycle [3]. In fact, there are estimates saying that static anal-
ysis tools (SAT) could detect about half of existing security
vulnerabilities [4]. However, despite being able to cover 100%
of the code, static analysis has limitations, such as raising

IEEE TRANSACTIONS ON RELIABILITY 2

false alarms and missing some application flaws, as the level
of their success depends on factors like the complexity of the
code, the employed programming constructs, and the included
third-party components [5]. Consequently, different tools tend
to return quite different results, and the selection of the SAT
that best fits a specific project is a challenging task.

Benchmarking could assist in the selection of alternative
SATs by comparing their behavior while testing relevant appli-
cations. However, the currently available SAT benchmarks are
very limited, being the most well-known efforts the Software
Assurance Metrics and Tool Evaluation (SAMATE) project
from NIST [6] and the OWASP Benchmark for Security
Automation (BSA) [7]. Besides not producing true to life
results, these benchmarks also lack the ability to be tailored
to a specific context (e.g., critical or non-critical applications),
which may affect the relevance of the results.

This paper proposes an approach to design benchmarks for
the evaluation of SATs that detect vulnerabilities in web appli-
cations considering different levels of criticality. Contrasting
with SAMATE and BSA, we propose the use of workloads
composed by real applications that have known vulnerabilities
(used to exercise the SATs, thus supporting their evaluation)
This assures that SATs are tested considering the need to
address both the complexity and the way real code is built,
instead of processing much simpler synthetic code samples or
test cases (as done by SAMATE and BSA). In fact, research
shows that SATs perform better with synthetic test cases than
with real software [8]. Additionally, by exploring the notion
of application scenarios (a scenario is a realistic situation of
vulnerability detection that depends on the criticality of the
application being tested and on the security budget available),
our approach allows a better match of its outcomes with
the environmental requirements for the SAT operation. In
particular, we consider four representative real-world usage
scenarios, ranging from the development of business-critical
to lower-quality applications.

The use of application scenarios in the benchmark raises
two fundamental challenges: how should the SATs be ranked?
and, how should the workload be created? To rank the SATs
we need several metrics, because no single metric is suitable
to quantify all aspects of the performance of SATs in distinct
scenarios [9]. Our approach relies on one main metric and a
tiebreaker metric for each scenario, where the first is used to
rank the tools and the second to decide eventual ties between
two or more tools. To compose the workload, we consider
a representative group of vulnerable applications for each
scenario. Since this is very hard to attain (e.g., business-
critical software is often kept secret) and has an associated
level of subjectivity (e.g., there are different interpretations
of what constitutes critical software), we propose a standard
procedure to assign applications to scenarios based on their
code quality. Generically, the assumption is that, scenarios
that are more stringent normally run software with better
quality. Therefore, we should assign applications with better
quality to scenarios with higher criticality. The quality of the
applications is measured using a quality model based on the
ISO/IEC 9126 standard, relying on a set of source code metrics
(e.g. the cyclomatic complexity), which are related to non-

functional requirements and can be obtained without running
the applications.

To demonstrate our approach, we designed a benchmark to
rank SATs for WordPress plugins. As WordPress is by far the
most popular content management system in use on the Web
[10], its plugins are responsible for a huge number of vulner-
abilities, e.g., 22% of the 170K sites hacked in 2012 were via
vulnerable plugins [11]. Moreover, 25% of all compromised
WordPress sites (89,000) analyzed by Sucuri [12] in the first
quarter of 2016 were due to just three vulnerable plugins
(TimThumb, RevSlider, and GravityForms). Our benchmark
includes 134 off-the-shelf WordPress plugins, organized in
four vulnerability detection scenarios, covering SQL Injection
(SQLi) and Cross Site Scripting (XSS) vulnerabilities, which
are among the most critical and frequent web application
vulnerabilities [13].

The benchmark was used to evaluate five open-source PHP
SATs (RIPS, Pixy, phpSAFE, WAP, and WeVerca). Results
show that it can be used to rank the SATs, and that different
tools have distinct vulnerability detection capabilities, with
some performing very poorly in some cases. Moreover, we
observed that no tool is the most appropriate for all scenarios,
which confirms the relevance of adapting the ranking metrics
and the workload considering the characteristics of the sce-
nario where the tools are going to be used. By comparing our
results with the SAMATE and BSA benchmarks we show the
relevance of using application scenarios considering specific
metrics and tailored workloads.

The contributions of this work can be summarized as
follows:

1) A general approach to design benchmarks for the eval-
uation of SATs able to detect software vulnerabilities,
considering (i) workloads that include real vulnerable
applications representative of scenarios with different
levels of criticality, and (ii) different ranking metrics.

2) A process to build workloads by collecting vulnerable
applications, characterizing them in terms of vulnerable
and non-vulnerable lines of code (LOC), and assigning
them to scenarios.

3) A process for assigning applications to scenarios based
on their software quality.

4) A concrete instantiation of the general approach to
demonstrate its feasibility, evaluating five SATs on the
detection of SQLi and XSS vulnerabilities in a workload
composed of 134 WordPress plugins organized in four
scenarios and using different metrics for each scenario.

5) A comparative evaluation of the ranking obtained using
our instantiation with the SAMATE methodology and
the OWASP’s BSA benchmark.

The outline of the paper is as follows. Next section in-
troduces background concepts and related work. Section III
details the proposed approach for benchmarking SATs for
vulnerability detection. Section IV describes an instantiation
using WordPress plugins as workload. Section V presents
the experimental results and Section VI discusses the main
properties and limitations of the proposed benchmark. Section
VII concludes the paper.

IEEE TRANSACTIONS ON RELIABILITY 3

II. BACKGROUND AND RELATED WORK

This section presents background on benchmarking proce-
dures, a review of SATs for vulnerability detection and how
they may be compared by means of existing benchmarks. An
overview of software quality models is also included, as they
are important to define the workload for each scenario.

A. Benchmarks

The most common method to assess and compare the
performance of alternative tools is to run them with a set of
representative test cases and compare the results. A standard
process for doing this task is called a benchmark [14] [15]
and typically includes three main components [16]:

1) Workload, which is a set of representative test cases for
the tools under benchmarking.

2) Metrics to compare how the tools under benchmarking
fit their purpose.

3) Procedures and rules for the benchmark execution.
The workload is the component most influenced by the bench-
marking domain and strongly determines the results. Thus, the
workload should ensure the following properties [16]:

Representativeness - the workload should be typical of the
domain in which the benchmark will be applied. This is
influenced by the size and diversity of the test cases [8]. The
benchmark results should provide relevant information to the
users in the context of their planned use.

Comprehensiveness - the workload should be able to ex-
ercise all the important features typically used in the target
domain. Features should be balanced according to usage in
real cases.

Focus - the workload should be centered on characterizing
the targets under benchmarking. Three criteria should be
considered: coverage (the need for applications with a broad
and complete range of tests), relevance (the importance of the
load in the context of the benchmark domain) and ground truth
(ideally, to know the expected result from the execution of the
load).

Configurability - users should be able to customize the
workload considering their requirements (scenario).

Scalability - the workload should increase or decrease in
number and complexity of test cases preserving the relation
with the real application scenario.

B. Static Analysis Tools for Vulnerability Detection

XSS and SQLi have been for many years in the first three
places of the OWASP Top 10 of web application security
vulnerabilities [13], and they are also two of the most widely
exploited ones [17]. A XSS attack consists of the injection
of JavaScript in a vulnerable web page; and a SQLi attack
is the injection of code that changes the SQL query sent to
the back-end database. These attacks are very dangerous to
enterprises and individuals, since they may allow performing
undue actions, such as accessing privileged database accounts,
manipulating unauthorized database data, impersonating other
users to perform actions on their behalf, defacing websites,
injecting malware and virus, among others. Many static

analysis tools include features for detecting SQLi and XSS
vulnerabilities, although their real effectiveness is questionable
and not fully understood [18] [8].

SATs inspect the source code of a software program without
executing it, to discover potential problems (e.g., security
vulnerabilities). These tools are considered by many as the
most efficient way to automatically locate vulnerabilities in
software [19] [20] [21]. However, SATs are limited by their
nature and often contain bugs themselves [22]. Moreover,
some specific programming constructs are difficult to analyze,
such as dynamic file inclusion, evaluation of dynamic strings,
object-oriented programming (OOP), and automatic typecasts.
Therefore, SAT developers simplify assumptions by producing
approximate solutions that frequently lead to false alarms and
undetected vulnerabilities [22].

Nowadays, there is a large number of SATs available and
novel tools are emerging to address new needs. However,
different tools have different strengths, depending on the
algorithms and technologies used in their development [23]
[24]. Due to the diversity of results coming from SATs,
especially the trade-off between soundness and completeness,
there is no consensus regarding which one is the best, because
false alarms take a lot of time to verify and undetected
vulnerabilities may lead to exploits.

In a previous work we studied this problem arguing that
a combination of diverse SATs can improve the vulnerability
detection [25]. We evaluated 32 combinations of SATs for
different scenarios and vulnerability classes, and showed that
the best solution: 1) is never composed by all the SATs, 2)
changes both across scenarios and classes of vulnerabilities,
and 3) in some cases is just a single SAT. In fact, combining
many tools can be counter-productive as this will not lead
to the detection of more vulnerabilities, but will increase the
number of FPs reported. In the experiments described in [25],
we used a benchmark for SATs, for criticality scenarios and a
workload of real applications. However, the process of defining
and implementing such a benchmark, the problems associated
and their solutions were not detailed. The current paper fills
this gap by proposing and evaluating such benchmark and
discussing all the aspects leading to its implementation. It also
presents a case study on how to find the most appropriate SAT
that satisfies the requirements of each scenario.

C. Benchmarks for Static Analysis Tools

There is no consensus on the metrics to use for evaluating
the effectiveness of SATs (coverage, precision, recall, F-
Measure, discrimination, etc.). Delaitre et al. [8] identified
three test case characteristics required to calculate such met-
rics: statistical significance, ground truth, and relevance. How-
ever, in practice, test cases respecting all these characteristics
do not exist (or are not publicly available), and creating
them is difficult due to the amount of effort that would be
required. What we can find are test cases combining two
of the characteristics: software with Common Vulnerability
Enumeration (CVE) (relevance and ground truth), production
software (statistical significance and relevance), and synthetic
test cases (statistical significance and ground truth) [8].

IEEE TRANSACTIONS ON RELIABILITY 4

Two benchmarks for SATs are the BSA [7] from OWASP
and the SAMATE project [6] from NIST. Through the devel-
opment of tool functional specifications [26], test suites and
tool metrics, the SAMATE project establishes a methodology
to understand the capability of SATs against a set of weak-
nesses. The workload contains test suites for C/C++, Java,
and PHP code, and includes a variety of test cases inspired on
real applications, applications specifically developed for the
benchmark and code written by students. The metrics used
to evaluate the tools are the false positive rate, precision and
recall.

The BSA from OWASP is a free and open test suite to
evaluate the speed, coverage, and accuracy of automated SATs
and services [7]. The workload contains over 20K Java test
cases that are fully runnable and exploitable, including 11
classes of vulnerabilities. Each category comprises test cases
with and without vulnerabilities. Instead of real applications,
the test cases are small pieces of code with less than 100 lines,
derived from coding patterns observed in real applications.

Evaluating the effectiveness of SATs using the SAMATE
and the BSA benchmarks requires some manual work: run-
ning the SATs for detecting vulnerabilities in the synthetic
workloads, converting the results of the SATs to a common
format, comparing the results with the expected ones, and
computing the chosen evaluation metrics. The main limitation
of both SAMATE and BSA is the synthetic workload, which
is composed mainly by simple small test cases with few
programming constructs, that may not be representative of
production code, limiting the validity of the results in real con-
ditions [8]. Also, the evaluation procedure does not consider
the specific characteristics of the scenario where the tools are
to be used. This contrasts with the reality, where applications
are large and complex. Thus, with these test cases, it is very
difficult to evaluate the real effectiveness of the SATs. In our
benchmark, we propose a workload composed of software in
production, i.e., real applications that have real vulnerabilities.
The workload is built following a process to characterize the
applications in term of vulnerable LOCs and non-vulnerable
LOCs, and assign them to scenarios based on their software
quality.

Kupsch and Miller [27] compared the results of two com-
mercial SATs with an in-depth manual vulnerability assess-
ment. The SATs just found a few of the several vulnerabilities
discovered in the manual assessment and missed many vulner-
abilities requiring a deep understanding of the source code.

In additon to the workload issues, another limitation of
existing works is the use of the same metrics independently
of the environment where the vulnerability detection is going
to be performed (projects have specific goals and constraints
regarding criticality and budget). We aim to improve these
aspects by using a representative set of real web applications
with real vulnerabilities, and to use different evaluation metrics
to rank the tools according to the scenario considered.

D. Software Quality

Several software quality models were proposed and many
tools were created to control the development and maintenance

of software [28][29][30][31]. Among others, these tools are
used to identify problems in the source code early in the devel-
opment process, allowing project managers to take mitigation
actions. In fact, several studies show that there is a relation
between the quality of the source code and the failures of
software products [32]. For example, it is known that code
units that have the highest complexity also tend to contain
more defects [33].

Web applications have characteristics in common with tradi-
tional software, however they also have unique characteristics
that are related to the distributed nature of the Internet, use
and reuse of third-party components developed in multiple lan-
guages, web interfaces with users, the speed of access to data,
and the security of transactions [34]. Thus, traditional software
quality models may not be adequate to fully assess the
quality of web applications. Since web applications became an
indispensable platform in all sectors of our society, researchers
proposed models for assessing the quality characteristics of
web-based applications. Nabil et al [35], proposed a software
quality model for web-based applications that extends the ISO
9126 software quality model by adding characteristics such
as reusability, scalability, credibility, security, popularity and
profitability, among others. They organized these characteris-
tics in three views: developers, owners, and visitors. Sankar
et al. [34] proposed common quality attributes for secure web
applications organized in four quality categories: design, run-
time, system, and user.

Several source code metrics (SCMs), like the Extended
Cyclomatic Complexity Number (CCN2, a variation of the
Cyclomatic Complexity (CCN) adapted for OOP [36]) [37],
or the number of Logical Lines of Code (LLOC), have been
proposed to measure quantitatively the quality of software
products [38]. A common method for aggregating SCMs is
to build a risk profile based on a set of predefined thresholds
for the SCM [39]. This allows developers to focus on software
units where SCMs are exceeding the thresholds first and the
others later, as units with higher values for several SCMs tend
to have more faults [32].

An appropriate use of SCMs requires risk thresholds to
determine whether the value of a SCM is acceptable or
not. These risk thresholds vary widely in the literature. For
example, the limit of 10 for CCN was proposed by McCabe
[36], but limits as high as 15 have also been used successfully
[40]. In fact, the risk thresholds are defined based on the
opinion of software quality experts for particular contexts [41].
For example, in high quality software, it is admissible to have
small percentages of source code with high values for some
SCMs to express a balance between real needs and idealized
design practices [41].

Alves et al. [38] proposed a methodology for deriving
threshold values for SCMs based on data analysis from a
representative set of applications. This methodology has been
successfully used in several works. One example is the method
proposed by Baggen et al. [42] to rate the maintainability of
the source code of applications (from 0.5 to 5.5 stars) based
on risk profiles and a set of rating thresholds. The Baggen
et al. method is applied by the Software Improvement Group
(SIG) to annually re-calibrate its quality model [43], which

IEEE TRANSACTIONS ON RELIABILITY 5

forms the basis of the evaluation and certification of software
maintainability conducted by SIG [44] and TViT [42].

The Static Analysis community has recognized that the
analysis of source code is harder than usually assumed [45].
The participants of the NIST workshop on Software Measures
and Metrics to Reduce Security Vulnerabilities (SwMM-RSV)
recommended that code should be amenable to automatic
analysis [45]. Therefore, the analyzability (sub-characteristic
of maintainability) should be measured and increased to make
the code readily analyzable. This contributes to reduce vul-
nerabilities, as tools tend to perform better in less complex
code.

In our benchmark, the rating of applications (to distribute
test cases according to the specificities of the development sce-
nario) is done based on the Baggens et al. method. In practice,
we define four range thresholds to map the applications with
the four scenarios. Neither of the other existing benchmarks
(SAMATE and BSA) uses software quality models to define
representative workloads.

III. BENCHMARKING APPROACH

Our benchmarking approach follows a specification-based
style, where the specification defines the functions that must be
achieved by the target tools, the required inputs (workload) and
the outcomes (vulnerabilities and metrics) [46]. Essentially, the
idea is to run the target SATs using as input a set of real-world
vulnerable software and, after gathering the vulnerabilities
identified by the SATs and verifying their correctness, use a
small set of metrics that summarize the detection capabilities
of the tools to obtain a ranking for each development scenario.

The high variety of applications constructed with heteroge-
neous components and the diversity of vulnerability classes
make it unfeasible to define a benchmark for all SATs in
all situations. Therefore, a benchmark should be specifically
built or configured for a particular domain to allow making
educated choices during the definition of the components
[9]. In this work, defining the benchmark domain directly
affects the workload and includes selecting the class of web
applications (banking, social networking, etc.) and the classes
of vulnerabilities (SQLi, XSS, etc.) to be detected by the target
SATs. Also, the strengths and weaknesses of the workload
depend on the balance of several criteria, often conflicting.
Since no single workload can be strong in all criteria, there
will always be a need for considering multiple workloads
[46]. Therefore, our proposal is to define a set of workloads
according to specific scenarios. Moreover, the workload should
be built using a representative set of real software code with
vulnerabilities.

The overall SAT benchmark architecture is illustrated in Fig.
1. Our approach is composed of four components that are
introduced next and detailed in the following sections:

1) Scenarios - requirements representing real contexts, with
constraints with different criticality, where SATs will be
used.

2) Metrics - used to characterize and compare the effective-
ness of the tools under benchmarking, in each specific
scenario.

Scenarios Workload
Static analysis

tools (SAT)

Reporting

SAT for each

scenario

Metrics Procedure

Fig. 1. General architecture of the benchmark.

3) Workload - representative applications, with a set of
vulnerabilities, to be used in each scenario. The classes
of vulnerabilities (SQLi, XSS, etc.) should be represen-
tative of the target application domain.

4) Procedure - the process to execute the benchmark us-
ing the workload. For each scenario, the benchmark
produces a report with the ranking of the SATs under
benchmarking, ordered using the relevant metrics.

A. Scenarios

A scenario should be based on the technical needs and busi-
ness impact of the applications in an organization, by means
of requirements in terms of the level of security that should
be satisfied and the amount of resources available during
development. As an example, for a high-quality scenario (e.g.,
home banking), one wants to select the SAT with the highest
detection rate, even if it raises more false alarms than others,
since any vulnerability that is left undetected may have a high
impact if successfully exploited. Therefore, all resources that
are required to check the warnings produced by the SAT and
to fix the vulnerabilities are assumed to be available. On the
other hand, for medium-quality scenario (e.g., corporate site),
one may want the SAT with the highest detection rate, but
that does not raise too many false alarms, since the resources
available to deal with those false alarms are not unlimited.

In our approach, four criticality levels representing realistic
scenarios are considered. We adapted the names of the sce-
narios defined by Antunes et al. [9] to better represent their
requirements, but maintaining their scope:

1) Highest-quality - every vulnerability missed may be a
big problem due to the criticality of the application. For
this scenario the goal is to select the SAT reporting the
highest number of vulnerabilities even if reporting many
false alarms.

2) High-quality - given that the criticality of applications is
not the highest, a few vulnerabilities may be missed if
that lowers the number of false alarms. For this scenario
the goal is to select the SAT reporting the highest
number of vulnerabilities but not too many false alarms.

3) Medium-quality - vulnerabilities may be missed at the
cost of reducing the false alarms. For this scenario the
goal is to select a SAT reporting few false alarms at the
cost of skipping some vulnerabilities.

4) Lowest-quality - every false alarm is an important cause
of concern due to tight budget restrictions. The goal
for this scenario is to select the SAT reporting the
lowest number of false alarms while still reporting
vulnerabilities.

IEEE TRANSACTIONS ON RELIABILITY 6

The definition and usage of scenarios is very helpful for
software developers and decision makers because they can
control the acceptable/expected outcomes of the static analysis
process for each project that fits in a scenario.

B. Metrics

To compare the results and rank the benchmarked SATs we
propose the use of metrics that are adequate to the vulnerability
detection scenario. For each scenario, we propose one main
metric to rank the tools and a tiebreaker metric used only when
there is a tie among tools (see Table I), adapted from Antunes
et al. [9]. In practice, the metrics depend on the vulnerability
detection goals, which are related with the amount of available
resources to fix the vulnerabilities. For example, in the highest-
quality scenario the chosen metric is recall, which allows
finding the highest number of vulnerabilities at any cost, even
ignoring the precision of the results. Only in the case of a tie,
the precision is used to rank first the tool that reports less false
alarms.

The next paragraphs describe the evaluation metrics and
present some arguments why the metrics portray the effec-
tiveness of the SATs in each scenario, considering that the
number of Negative (N, non-vulnerabilities) instances are
more frequent than the Positive (P, vulnerabilities) instances
in the workload. The metrics Recall and F-Measure are
focused on all P instances. The metric Precision is focused
on some P instances (i.e., the outcomes of the SATs). The
metrics Informedness and Markedness focus on all P and all
N instances, by means of true positives (TP, vulnerabilities
classified correctly), false positives (FP, non-vulnerabilities
classified incorrectly or false alarms), true negatives (TN, non-
vulnerabilities classified correctly), and false negatives (FN,
vulnerabilities classified incorrectly or missed vulnerabilities)
[47].

• Recall – The proportion of true vulnerabilities that are
correctly identified as such, ranking first the SAT report-
ing the highest number of TPs required for the highest-
quality scenario, and for the high-quality and medium-
quality scenarios in case of a tie.

Recall =
TP

TP + FN
(1)

• Informedness – How consistently a SAT predicts the
outcome of both a TP and a TN, i.e., how informed a
SAT is for the specified condition, versus chance. Every
TP increases the metric in the proportion 1/P and every
FP decreases the metric in the proportion 1/N. Since the
prevalence of P instances is less than the prevalence of

TABLE I
SUMMARY OF METRICS BY SCENARIO

Scenario Metric Tiebreaker

1 - Highest-quality Recall Precision
2 - High-quality Informedness Recall
3 - Medium-quality F-Measure Recall
4 - Low-quality Markedness Precision

N instances, the metric prioritizes SATs reporting more
vulnerabilities and at the same time not too many FPs,
which is the goal of the high-quality scenario.

Informedness = Recall + InverseRecall − 1 (2)

Informedness =
TP

TP + FN
+

TN

FP + TN
− 1 (3)

• Precision – Proportion of the classified positive cases
that are correctly classified. This metric is used only as
tiebreaker. Thus, from a list of tools reporting the same
number of vulnerabilities the best one is the SAT with
highest Precision (i.e., less FPs reported).

Precision =
TP

TP + FP
(4)

• F-Measure – The harmonic mean of precision and recall.
In this metric, the TPs have twice the weigh of the FPs.
Thus, it is suitable for the medium-quality scenario where
it is preferable to fix less vulnerabilities than fix more
vulnerabilities and at the same time to consume resources
checking FPs.

F −Measure =
2× TP

2× TP + FP + FN
(5)

• Markedness – How consistently the SAT has the out-
come as a marker, i.e. how marked a condition is for
the specified SAT, versus chance. The metric sums the
proportions of the positives and the negatives that are
correctly identified as such. The Precision (1st part of the
formula 6) focus on the FPs reported by the SATs and
handles only part of the N instances. Therefore, based
on the Precision, a SAT reporting no FPs is better than
a SAT reporting all vulnerabilities but at least one FP.
This fits with the required for the low-quality scenario,
where there are no resources for addressing FPs. The
Inverse Precision (2nd part of formula 6) focus on the
FNs (i.e., the vulnerabilities that were left undetected)
and handles only part of P instances. Thus, the metric for
SATs with the same inverse precision, ranks first the SAT
reporting more vulnerabilities. Thus, the metric portrays
the required goal for the low-quality scenario.

Markedness = Precision+ InversePrecision (6)

Markedness =
TP

TP + FP
+

TN

FN + TN
(7)

C. Workload

The perfect workload is a large set of real applications of
diverse sizes, developed according to typical industry practices
and with all vulnerabilities identified [45]. However, such
workload does not exist and creating it is an unfeasible task
that would consume immense resources. To limit this problem,
we propose a process based on the results of several SATs
combined with manual review for finding vulnerabilities and
non-vulnerabilities in real software. The proposed process to
build the workload is presented in Fig. 2, and it involves three
stages (illustrated by the gray boxes in the figure), which are
discussed in the following subsections.

IEEE TRANSACTIONS ON RELIABILITY 7

Static analysis

tools

Rating

thresholds

Assinging applications
to scenarios

Identifying
VLOCs and NVLOCs

Vulnerable

applications repository

Scenario

Workload
Collecting

source code of
vulnerable apps

Fig. 2. Process to compose the workload.

Stage 1: Collecting the source code of vulnerable applications

The methodology to select a representative set of vulnerable
applications to define the workload includes the following
steps, represented in Fig. 3:

1) Choosing applications in the benchmarking domain for
which source code is available (SATs require the source
of the application to detect vulnerabilities).

2) Choosing the classes of vulnerabilities that are relevant
in the benchmark domain.

3) Collecting all vulnerabilities of the chosen applications
registered in their development repository or from vul-
nerability databases, e.g. WPVD, CVE, and Bugtraq.

4) Selecting only vulnerabilities with a Proof of Concept
(PoC), i.e., vulnerabilities for which a proof that they
can be exploited exists (i.e. the attack that can be done
and the code of the application that is affected by it, are
available).

5) Downloading the applications with the vulnerabilities
with PoCs from source code repositories.

A major advantage of this methodology over existing bench-
marks (like those from NIST and OWASP) is the repre-
sentativeness of the vulnerabilities since they exist in real
applications and are proven to be exploitable.

Stage 2: Assigning applications to scenarios

Choosing
class of

applications

Selecting
classes of

vulnerabilities

Vulnerabilities

database

Vulnerable

applications to

workload

Vulnerability

characteristics

Applications

repository

Filtering
Vulnerabilities

with PoC

Collecting all
vulnerabilities

Downloading
applications

Fig. 3. Process for collecting vulnerable applications.

To compose the workload, we need to assign a represen-
tative group of vulnerable applications to each scenario. This
process has two steps (Fig. 4):

1) Assigning ratings to applications. This is based on the
approach proposed by Baggen et al. [42] for rating
the maintainability of the source code of applications
(from 0.5 to 5.5 stars). The Baggens approach uses a
standardized measurement model based on the ISO/IEC
9126 definition of maintainability and a small set of
SCMs (e.g., Cyclomatic Complexity Number (CCN2)
[37]). These SCMs are used to measure the Software
Product Properties (SPPs) (e.g., Unit Complexity) of
the software. Table II lists the SCMs used to measure
the SPPs including the level of measure. Table III
outlines the SPPs and their relationship with the sub-
characteristics of maintainability. The table also includes
an example of assigning a rating to an application.
The ratings of the sub-characteristics are obtained by
averaging the ratings of the selected properties (marked
with a ’×’). The final rating is obtained by adding
the average ratings and dividing by 4 (in the example:
(4.0+4.0+2.6+3.5) / 4 = 3.5 stars).
The Baggen’s approach is implemented in three major
steps and requires as input: i) a large set of applications
in the benchmarking domain; ii) a set of percentages of
code to represent; and iii) a table of rating thresholds
for each SCM. For i) we use the applications of our
workload, and for ii) and iii) we adopt the same values
proposed by Baggen et al., since they were successfully
used in several works. The first step is the extraction of
the values of the SCMs. There are many free tools for
gathering the SCMs (e.g., PHPdepend [37]). Afterwards,
using the values of all SCMs of all applications we
derived the ratings for each SCM of each application.
Finally, we obtain the ratings of the applications by
averaging the ratings of the sub-characteristics of main-
tainability, as described before.

2) Assigning applications to scenarios. This step is based
on a simple scheme for mapping the ratings with
scenarios. Since the ratings vary from 0.5 to 5.5 in
ascending quality order and the scenarios from 1 to 4
in descending level of criticality, we used the following
mapping rating-scenario: [4.5, 5.5] - Scenario 1 (highest-
quality); [3.5,4.5[- Scenario 2 (high-quality); [2.5, 3.5[
- Scenario 3 (medium quality); and [0.5, 2.5[- Scenario
4 (low-quality). As shown, we used intervals of one

Vulnerable

applications to

workload

Assigning
rating

applications

Attributing
applications
to scenarios

Rating

thresholds Scenarios

Apps | Scenario

P1 C2

P2 C1

P3 C3

P4 C4

... ...

Fig. 4. Process for assigning applications to scenarios.

IEEE TRANSACTIONS ON RELIABILITY 8

TABLE II
SCMS FOR EVALUATING THE SPPS

SPP SCM Level Description

Duplication DLD App. Duplicated Line Density [48] [49]
Size LLOC Unit Logical Lines of Code
Size WMC Class Weighted Method Count [50]
Complexity CCN2 Unit/

Class
Extended Cyclomatic Complexity
Number [37]

Coupling CBO Class Coupling Between Objects [51]
Interfacing NPARM Unit Number of parameters in functions and

methods
Class Interface CIS Class Number of non-private methods and

properties [52]
Testing NPATH Unit Number of execution paths

value for mapping the ratings into the scenarios, trying to
respect Baggens approach, except for the less stringent
(and less relevant) scenario, which accommodates all the
ratings below 2.5 (code of lower quality).

Stage 3: Identifying vulnerabilities and non-vulnerabilities
To evaluate a SAT, we need to know which LOCs are

vulnerable (i.e., positive instances (P=TP+FN), or VLOCs)
and which LOCs are not vulnerable (i.e., negative instances
(N=FP+TN), or NVLOCs). However, for large code bases,
this is a hard task that requires a thorough review by security
experts, and the result may not be completely accurate (as
experts can also make mistakes). To address this problem we
propose the procedure discussed next.

A vulnerability may manifest in a restricted set of constructs
(e.g., XSS in the PHP echo, mysqli query, etc.) of the pro-
gramming language, named sensitive sinks (SS), which can be
viewed as site (location) in the code that can be exploited if
some malcrafted input is used as argument [53]. Although the
number of VLOCs in an application is limited to the lines
that include such constructs, the number of vulnerabilities
can potentially be greater than the number of SS, as one
SS may have several vulnerabilities. For example, the PHP
echo "$name $city", may have two XSS vulnerabilities
(due to the two variables used). In this work, we count
the vulnerabilities at the level of the LOC, meaning that a
LOC with one or more vulnerabilities counts as one positive
instance. Next, we discuss how to characterize the VLOCs and
NVLOCs and present the method to obtain them.

a) Characterizing VLOCs: The initial list of VLOCs of
the workload are the vulnerabilities (i.e., the LOCs where
the vulnerabilities are located) resulting from the process of
collecting source code of vulnerable applications (Section
III-C), specifically, exploitable vulnerabilities registered in
public vulnerability databases. However, the number of these
vulnerabilities is very low, probably lower than the real num-
ber, breaking the ground truth of the workload. Our approach
to find more VLOCs in the workload is based on running
several SATs and on a manual review to confirm the results.
Thus, to obtain the VLOCs, we run the SATs to scan for
vulnerabilities in the selected applications; then, the outputs
are combined and each candidate vulnerability is manually
reviewed to determinate if it is a TP (i.e., vulnerability) or a

TABLE III
MAPPING OF SOFTWARE PRODUCT PROPERTIES TO ISO/IEC

SUB-CHARACTERISTICS OF MAINTAINABILITY AND AN EXAMPLE

Software Product Properties

Sub-
characteristics

D
up

lic
at

io
n

U
ni

t
co

m
pl

ex
ity

U
ni

t
si

ze

M
od

ul
e

co
up

lin
g

C
la

ss
C

om
pl

ex
ity

U
ni

t
in

te
rf

ac
in

g

C
la

ss
in

te
rf

ac
e

si
ze

U
ni

t
Te

st
in

g

A
ve

ra
ge

Ratings example 5.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0

Analyzability × × × 4.0
Changeability × × × × 4.0
Stability × × × 2.6
Testability × × × × 3.5

Maintainability rating (average: ? ? ? ?) 3.5

FP (i.e., non-vulnerability). Thus, the initial VLOCs merged
with all TPs becomes the list of positive instances (P) and
all FPs becomes part of the list of negative instances (N)
or non-vulnerable LOCs (NVLOCs). Note that, if available,
other approaches for detecting vulnerable lines of code may
be integrated in the benchmarking process.

b) Characterizing NVLOCs: The first list of NVLOCs is
limited to the FPs reported by the tools used in the process
above. Therefore, if the tools report few FPs, the size of the
set will be small, so the values of the metrics that depend
on the number of NVLOC (e.g., informedness) would not be
representative if only those were considered. A naive way to
identify more NVLOCs would be to calculate the difference
between all the LOCs and the VLOCs. However, this would
result in an extreme unbalance between VLOCs and NVLOCs.
In this case, FPs would have a very small (or negligible)
effect on the metrics based on the NVLOCs. For example, the
results for the informedness metric would become very similar
(slightly lower) to the results for the recall metric, thus loosing
usefulness. To overcome this problem, we propose to consider
as NVLOCs only the LOCs that constitute a sensitive sink
(SS) with at least one variable, but for which no vulnerability
is known or has been detected. SS function calls without any
variable are not possible to be vulnerable, thus they are not
considered as NVLOCs. This way, the list of NVLOCs in
the workload is created by merging two lists: the first comes
from the process of characterizing vulnerable LOCs (previous
subsection), which contains the FP identified there, and the
second results from a process to identify more NVLOCs based
on the SSs in the source code.

c) Obtaining VLOCs and NVLOCs: The method for
obtaining VLOCs and NVLOCs includes six steps:

1) Identify the set of SATs to be used for defining the list
of VLOCs and NVLOCs. This includes the definition of
the configuration settings for the selected tools.

2) Detect vulnerabilities by running the SATs on the
workload applications. From this step results a list of
candidate VLOCs.

3) Manually verify the vulnerabilities reported by the tools
and classify them as VLOCs or NVLOCs.

4) Create the list of VLOCs by merging the initial list of
vulnerabilities with PoC that resulted from the process

IEEE TRANSACTIONS ON RELIABILITY 9

of collecting the source code of vulnerable applications
(see III-C) and the VLOCs from Step 3).

5) Create the set of NVLOCs by merging all distinct FPs
reported by the tools, which will compose the first
part of NVLOCs in the workload. The second part is
composed by the LOCs where a SS function is called,
having at least one variable, but excluding the LOCs that
were labeled as VLOCs in the previous step.

6) Characterize the set of VLOCs, including information
on the vulnerable file, the LOC and vulnerable variable,
the class of vulnerability, the source inputs and sensitive
sinks.

We are aware that the process for extracting VLOCs and
NVLOCs may leave some vulnerabilities undetected. Con-
sequently, an issue may occur during the execution of the
benchmark if one or more SATs report previously unknown
vulnerabilities. This requires a manual review to classify such
findings as TPs or FPs. This allows updating the list of
VLOCs and NVLOCs, but also changes the values of the met-
rics/ranking of SATs previously benchmarked, which may also
need to be updated. Although a best effort approach, the usage
of several SATs in the LOCs characterization process would
minimize this problem, therefore reducing the probability of
a SAT to detect unknown vulnerabilities.

D. Procedure

The benchmarking procedure is a well-defined set of steps
and rules that must be followed to implement and run the
benchmark (see Fig. 5):

1) Preparation – identifying the SATs to be benchmarked.
Different tools are executed in different ways, as they
have diverse features, configurations and user interfaces,
thus, whenever possible, the tools must be configured
according to the characteristics of applications in the
benchmark domain.

2) Execution – running the SATs under benchmarking to
detect vulnerabilities in the workload.

3) Normalization of reports – as each tool delivers the
results in a specific format, they must be normalized
and merged into a single report with a standard format,
including the following information: the LOCs reported
as vulnerable, the files where they were found, the
vulnerability class, and the application where they were
discovered.

4) Vulnerability verification – analysis of the SATs’ results
by applying three verifications: (i) the vulnerabilities
reported by the SATs that belong to the list of VLOCs
(i.e, TPs) are automatically verified by a grading pro-
gram to confirm their correctness; (ii) the vulnerabilities
reported by the SATs but that belong to the list of
NVLOCs (i.e., FPs) are also automatically verified by
the grading program; (iii) the vulnerabilities reported
by the SATs that do not belong to the list of VLOCs
or NVLOCs require a manual verification to confirm
their vericity, and then update the lists of VLOCs and
NVLOCs according to the results of the manual review
(i.e., adding such vulnerabilities to the lists: if the

Preparation Execution Normalization
reports

Vulnerabilities
verification

Workload Vulnerabilities characteristics

Apps | Scenario

P1 C2

P2 C1

P3 C3

P4 C4

... ...

Measures calculation
rankingMetrics by

scenario

V1

V2

...

Vn

Tool A 20%

Tool B 40% 70%

Tool C 40% 82%

Report

Fig. 5. Benchmarking procedure.

vulnerability reported is a TP, the VLOC is updated;
otherwise, if it is a FP, the NVLOC list is updated).

5) Metrics calculation and ranking – based on the SAT
outputs and their verification (previous step), the bench-
mark metrics are calculated automatically. Afterwards,
SATs are ranked according to the metrics recommend
for each scenario (see Table I).

IV. BENCHMARK INSTANTIATION

The benchmarking approach presented before intends to
be generic, meaning that it may be applied to any type of
application and class of vulnerabilities for the evaluation of
any set of SATs. In this section, we present an instantiation of
the approach, so we need to specify the workload and targets,
as detailed in the following subsections.

A. Target applications and vulnerability classes

The target applications are WordPress plugins and the target
vulnerabilities are SQLi and XSS, which are two of the most
common web application security vulnerabilities [13] and also
two of the most widely exploited [17].

WordPress is extensible by means of PHP-based resources
such as plugins that allow the addition of new features, tem-
plates, functions, etc. They are so common that the WordPress
Plugin Directory [54] contains around 50,000 plugins with
over 1.5 billion downloads. Besides being so widely used,
plugins also pose a serious security problem, as many of them
are developed without proper care, as shown by recent research
[55]. In fact, they are responsible for lots of vulnerabilities and,
since a single plugin may be used in thousands of websites,
they are an attractive target for hackers.

B. Workload

Next, we describe the composition of the workload for the
benchmark, based on WordPress plugins, and following the
process presented in Section III-C.

IEEE TRANSACTIONS ON RELIABILITY 10

1) Collecting the source code of vulnerable applications:
We used the online WPScan Vulnerability Database (WPVD)
to collect WordPress plugins with SQLi and XSS vulnerabil-
ities, including PoC and more details, like the CVE identifier
[56]. The result was a list of 134 WP plugins with 152
SQLi and 67 XSS vulnerabilities registered. Forty-two of
these plugins contain both classes of vulnerabilities, while
79 contain only SQLi and 13 only XSS. To have an idea of
their relevance, overall these plugins have been downloaded
over 77 million times and they are used in business, e-
commerce, monetization, social networking (Google, Face-
book, Youtube), photo and video gallery, registration, admin,
advertising, email, bookings, reservations, events management,
newsletter, e-learning and document manager. The list of
plugins, including rating information, distribution per scenario,
vulnerabilities and other details, is available online [57]. It
is important to emphasize that, using the workload that we
created, researchers can evaluate other SATs with little effort.

The plugins were developed in PHP using POP (Procedure
Oriented Programming) and OOP (Object Oriented Program-
ming). Notice that, in PHP, the presence of classes does not
imply an object-oriented design. Thus, it is frequent to find
procedural code using objects and OOP code using procedural
code. Overall, we have 31 POP plugins and 103 OOP plugins
(Table IV). The workload contains 466,164 LLOCs (Logical
Lines of Code), where 39.5% are POP, 47.8% OOP, and 12.7%
a mix of both. The number of LOCs is 1,023,081 where 32%
are POP, 57% OOP, and 11% a mix of both.

2) Assigning applications to scenarios: For gathering the
measures of the SCMs to evaluate the SPPs listed in Table
II, we used three tools: PHPdepend v2.5.0 [37] for gathering
the LLOC, WCM, CCN2, CBO, CIS, and NPTAH metrics;
SonarQube v5.2 [30] for the DLD metric; and PHPMD v2.6.0
for the NPARM metric.

The results of applying the methodology for assigning
applications to scenarios (see III-C) are presented in Table
IV, which shows the number of plugins that compose the
workload, distributed over the four scenarios. Scenario 1
(highest-quality) has a lower number of plugins compared with
2 (high-quality) and 3 (medium quality). This is realistic as
code with very high quality is not so common. Moreover, the
WordPress plugins considered have been download and used
so many times that a given level of quality is expected (they
would not be used that much if that was not the case). Thus,
the number of high- and medium-quality plugins is also much
higher than the number of low-quality plugins (scenario 4).

The SATs failed analyzing several of files of the plugins

TABLE IV
PLUGIN BACKGROUND INFORMATION

Scenarios OOP POP Total %Tot. Files LLOC %LLOC

Highest-quality 10 2 12 8.9 352 19542 4.2
High-quality 39 17 56 41.8 1687 122835 26.4
Medium-quality 40 11 51 38.1 2208 211297 45.3
Low-quality 14 1 15 11.2 728 112490 24.1

Total 103 31 134 100 4975 466164 100

TABLE V
DISTRIBUTION OF VULNERABILITIES AND NON-VULNERABILITIES BY SCENARIOS

AND TOOLS/VD

Scenario
phpSAFE RIPS

VD
Total

NV
Total

SQ
L

i

TP FP TP FP FP P N

1 29 5 0 0 17 5 84 41 89
2 274 58 43 2 35 60 1068 308 1128
3 99 50 153 113 22 163 2053 251 2216
4 36 32 1 0 10 32 1105 46 1137

Total 438 145 197 115 84 260 4310 646 4570

X
SS

1 96 16 113 29 3 43 947 168 990
2 1149 76 887 188 1 223 5673 1767 5896
3 951 264 1775 487 4 652 9370 2315 10022
4 244 33 369 89 5 116 3481 535 3597

Total 2440 389 3144 793 13 1034 19471 4785 20505

Total 2878 534 3341 908 97 1294 23781 5431 25075

(see section V). We observed that the percentage of LLOC
where at least one SAT failed the analysis decreases as the
quality of the code increases. The percentages are 56% for
the low-quality scenario, 50% for the medium-quality scenario
35%, for the highest-quality scenario, and 38% for the high-
quality scenario. This shows that the code with better quality
(i.e., less complex, as recommended by the participants in the
SwMM-RSV NISTs workshop [45]) increases the probability
of being successfully analyzed by the SATs. As a side effect,
this contributes to reducing vulnerabilities in the software,
since they are more likely to be detected by the SATs.
Because users have different requirement constraints regarding
the code quality and this in turn has a direct impact on the
ability to detect vulnerabilities, it is very important to have
the benchmark configured for scenarios based on the internal
software quality.

3) Identifying vulnerabilities and non-vulnerabilities: The
first part of the list of VLOCs was given by the information
collected from the WPScan Vulnerability Database (WPVD).
To obtain the second part, we ran two free SATs, RIPS
[58] and phpSAFE [55], to scan for vulnerabilities in the
workload. The SATs were configured by default for PHP
entry points, SS and sanitization functions (e.g., htmlenti-
ties, mysql real escape string). The results were manually
reviewed as defined in our design approach (Section III-C).

The list of NVLOCs considered is the combination of the
FPs reported by the tools with the list of LOCs that have
at least one SS outputting at least one variable. For this, we
developed a PHP script for gathering all SS function calls
of the source code files based on their Abstract Syntax Tree
(AST). From this list, we removed those already labeled as
VLOCs. The script was executed individually for each file.
A manual check of random samples has been performed to
increase the trust on the accuracy of the NVLOCs identified.

Table V presents the results obtained using our approach.
Overall, 7,725 (FP: 1,294 + TP: 5,431) LOCs were extracted
from the outputs of the tools and manually reviewed (80.8%
of TPs and 19.2% of FPs). The table depicts, for each tool,
the number of TPs and FPs, followed by the number of
vulnerabilities in the WPVD database (column VD) [56]. The
column Total FP is the union of the FPs of the tools, and

IEEE TRANSACTIONS ON RELIABILITY 11

NV shows the NVLOCs obtained in the previous step (VLOC
characterization). The two last columns show the number of
positive instances and negative instances (combination of the
FPs with the NV). These columns are used for calculating
the metrics and should be updated during the execution of the
benchmarking procedure if a SAT under testing reports a new
vulnerability.

An important aspect regarding the VLOCs is that the num-
ber of vulnerabilities reported in the WPVD (97, see table V)
is far from the reality (5431, see table V). In fact, we were able
to detect a much larger number of true vulnerabilities using
the SATs. This emphasiszeds the capability and relevance of
static analysis to detect vulnerabilities.

V. EXPERIMENTAL EVALUATION

The main goal of this experimental evaluation is to demon-
strate the benchmark, validate the benchmarking process and,
at the same time, confirm/deny the following hypothesis:

H1 The best SAT is the same across different scenarios.
H2 The best SAT is the same across different classes of

vulnerabilities.
We focus on free SATs as both occasional developers

and professional software houses wanting to speed up the
development process and reduce cost tend to use free tools as
much as possible. Furthermore, such tools are easily available
for research and results can be published without infringing
licensing agreements. In practice, we evaluated the following
tools: RIPS v0.55 [58], Pixy v3.03 [20], phpSAFE [55], WAP
v2.0.1 [59], and WeVerca v20150804 [60]. RIPS and Pixy
are the two most referenced PHP SATs in the literature, but
they are not ready for OOP analysis. Pixy performs tainted
analysis and alias analysis, but has not been updated since
2007, and RIPS has only been developed as open source until
2014. RIPS recently released a commercial version able to
fully analyze OOP code [61]. WAP, phpSAFE, and WeVerca
are more recent tools under active development, and they are
prepared for OOP code. In terms of configuration, phpSAFE,
RIPS, WAP and Pixy are configured by default for PHP entry
points, sensitive sinks and sanitization functions (e.g., htm-
lentities, mysql real escape string). WeVerca does not allow
configuration and includes, out of the box, a programmed list
of entry points, sensitive sinks and sanitization functions.

A. Ranking the Static Analysis Tools

We ran the benchmark for all the SATs searching for XSS
and SQLi vulnerabilities in the workload plugins. Overall,
WAP was able to analyze all plugins, but seven of them only
partially. Pixy analyzed partially 103 plugins (i.e., fails in
1473 files) and WeVerca was not able to analyze 20 source
files of 14 plugins. phpSAFE was unable to fully analyze 18
plugins (130 files), taking a very long time on those plugins
without returning any results. RIPS outputted the message
”Code is object-oriented. This is not supported yet and can
lead to false negatives” for 76 plugins (2179 files). In practice,
the tools could not fully analyze some plugin/files, reporting
runtime errors or taking a very long time without any results.

TABLE VI
RANKING OF TOOLS BY SCENARIO: SQLI

Main Tiebreaker
Tool TP FP FN TN Plugins Metric Metric

Highest-quality Recall Precision

WAP 49 4 26 83 7 0.653 0.925
phpSAFE 29 5 46 82 5 0.387 0.853
WeVerca 0 0 75 87 0 0.000 -
RIPS 0 0 75 87 0 0.000 -
Pixy 0 0 75 87 0 0.000 -

High-quality Informdeness Recall

phpSAFE 274 58 72 1057 30 0.740 0.792
WAP 44 4 302 1111 12 0.124 0.127
RIPS 43 2 303 1113 8 0.123 0.124
WeVerca 18 1 328 1114 6 0.051 0.052
Pixy 16 0 330 1115 7 0.046 0.046

Medium-quality F-Measure Recall

RIPS 153 113 114 2101 6 0.574 0.573
phpSAFE 99 50 168 2164 15 0.476 0.371
WAP 72 0 195 2214 11 0.425 0.270
Pixy 54 13 213 2201 4 0.323 0.202
WeVerca 21 34 246 2180 3 0.130 0.079

Low-quality Markedeness Precision

WAP 5 0 45 1137 2 0.962 1.000
RIPS 1 0 49 1137 1 0.959 1.000
phpSAFE 36 32 14 1105 7 0.517 0.529
WeVerca 0 0 50 1137 0 - -
Pixy 0 0 50 1137 0 - -

This results from limitations of the static analysis tools used,
potentially due to the size/complexity of some files.

The results by scenario for SQLi and XSS vulnerabilities
are listed in Table VI and Table VII, respectively. The columns
TP, FP, FN, and TN show the confusion matrix for the corre-
sponding SAT. The data in the table are firstly ordered by the
main metric (Metric), and secondly ordered by the tiebreaker
metric (Tiebreaker), as recommended for each scenario (in
the current case, the tiebreaker metric was not needed, but
previous work found cases where a tiebreak metric was useful
[9]). The Plugins column shows the number of plugins where
the SATs found vulnerabilities. The ratings of the SATs in the
tables are relative, not absolute.

Focusing on SQLi (Table VI) the tool chosen for each
scenario was: WAP for the highest-quality scenario; phpSAFE
for the high-quality; RIPS for the medium-quality scenario,
despite having detected vulnerabilities in just a few plugins (6);
and WAP for the low-quality scenario, with few vulnerabilities
found (5) and zero FPs. As for XSS vulnerabilities (Table
VII) RIPS was the best SAT for the highest-quality and the
medium-quality scenarios; phpSAFE was the best SAT for the
high-quality scenario; and WAP was the best SAT for the
low-quality scenario. Unlike for SQLi, all tools found XSS
vulnerabilities in all scenarios.

In general, the results show that the best solution for
vulnerability detection depends on the chosen scenario and on
the class of vulnerabilities. Therefore, hypotheses H1 (the best
SAT is the same across different scenarios) and H2 (the best

IEEE TRANSACTIONS ON RELIABILITY 12

SAT is the same across different classes of vulnerabilities) are
both false. In fact, the detection capabilities of the SATs are not
uniform across the two classes of vulnerabilities, nor across
scenarios even if considering the same class of vulnerabilities.
A relevant observation is that, in almost all cases, the SATs
analyzed are better at detecting XSS than SQLi.

We also verified whether or not the metrics we used were
the best to rank the SATs in each scenario. To confirm this,
we simulated the ranking procedure using the other metrics
and compared these results with those that we have in Tables
VI and VII. The resulting confusion matrices (TP, FP, FN, and
TN in the Tables VI and VII) show that the metrics we have
selected are the best to rank the SATs for each scenario.

B. Results for BSA and SAMATE

In this section, we compare our results with the results using
BSA and SAMATE, in order to show the capabilities and
limitations of the different metrics for ranking SATs. First,
we present BSA and SAMATE metrics, then their results on
ranking the five SATs, and finally we compare our rankings
with the SAMATE and BSA.

1) SAMATE Metrics: The metrics proposed by the SA-
MATE for evaluating the tools are Precision, F-Score (i.e.,
F-Measure), Recall and Discrimination Rate (DR). The DR is
applied to a pair of test cases: the bad and the good. The bad
test case has a vulnerability and the good test case is essentially
the bad test with the vulnerability fixed. While every TP counts

TABLE VII
RANKING OF TOOLS BY SCENARIO: XSS

Main Tiebreaker
Tool TP FP FN TN Plugins Metric Metric

Highest-quality Recall Precision

RIPS 113 29 55 961 10 0.673 0.925
phpSAFE 102 18 66 972 8 0.607 0.853
Pixy 69 14 99 976 7 0.411 -
WeVerca 44 5 124 985 7 0.262 -
WAP 23 6 145 984 3 0.137 -

High-quality Informdeness Recall

phpSAFE 1164 90 678 5735 46 0.617 0.792
RIPS 1013 194 829 5631 46 0.517 0.127
WeVerca 436 50 1406 5775 25 0.228 0.124
Pixy 453 148 1389 5677 28 0.221 0.052
WAP 219 55 1623 5770 18 0.110 0.046

Medium-quality F-Measure Recall

RIPS 1812 490 577 9479 43 0.773 0.573
phpSAFE 970 267 1419 9702 41 0.535 0.371
Pixy 717 56 1672 9913 23 0.454 0.270
WeVerca 621 21 1768 9948 19 0.410 0.202
WAP 344 13 2045 9956 18 0.251 0.079

Low-quality Markedeness Precision

WAP 62 3 483 3591 6 0.835 1.000
phpSAFE 244 33 301 3561 10 0.803 1.000
WeVerca 73 8 472 3586 7 0.785 0.529
RIPS 377 91 168 3503 10 0.760 -
Pixy 51 7 494 3587 9 0.758 -

when calculating recall, thus increasing the metric, for the DR
a TP counts if the tool reports a vulnerability in the bad test
case and does not report a FP in the good test case [62].

Since DR is applied to pairs of test cases, we would
need a vulnerability free version of each plugin (i.e., with
all vulnerabilities fixed) to calculate it. However, for many
plugins there is no fixed version available, so we could not
compute the DR metric. A key aspect is that the DR does not
consider the goals of the vulnerability detection in scenarios.
For example, in the high-quality scenario every vulnerability
found is important. However, ranking the tools using the DR
metric will rank first a tool reporting no FPs but less TPs
than a tool reporting more TPs but reporting a number of FPs
greater than the difference of TPs of the tools (2nd − 1st).

2) BSA Metrics: The BSA established a scientific way to
evaluate and compare tools. It defined a single metric called
benchmark accuracy score (BAS) which is equivalent to the
Informedness metric normalized to the range -100 to 100 [7].
It is based on the confusion matrix (TP, FP, FN, and TN)
and is essentially a Youden Index, which is a standard way of
summarizing the accuracy of a set of tests [7]. The metric is
calculated as following:

BAS = (TPR− FPR)× 100 (8)

The TPR and FPR metrics are respectively the True Positive
Rate or Recall and False Positive Rate as defined in Section
III-B.

The BSA established chart plots (scorecard) for visualizing
the performance of a tool or tools (see Fig. 6 to 8). The charts
plot the TPR versus FPR to provide a visual indication of the
results of the tools, showing how well each tool finds TPs and
avoids FPs. The charts include a slope one diagonal random
guess line. It means that a tool on that diagonal reported the
same rate of TPs and FPs, and its score is zero. The left-up
corner of charts represents an ideal tool and the right-bottom
corner the worst. Therefore, going up is good because the
tool is reporting TPs and going to the right is bad because
the tool is reporting FPs. Tools above the diagonal line have
a TPR greater than the FPR and tools below the line have
FPR greater than the TPR. On the charts, the BAS metric is
the normalized distance from the point (TPR, FPR) down to
the diagonal line. The charts can include the results of several
tools by vulnerability class or the average of all vulnerability
classes of the tools to provide an overall rank of the tools.

3) Results: Except for the DR metric, the SAMATE metrics
coincide with some of our metrics. The results for those
metrics where presented before in the tables VI and VII. As the
remaining metrics of SAMATE (recall, F-Score and precision)
are not used for explicitly ranking the tools, we do not include
that analysis here (i.e., the F-Score for the scenario highest-
quality, the Precision and the Recall for the scenario medium-
quality, etc.). However, they can be calculated with the data
in the referred tables.

Using the data from tables VI and VII, we computed the
values of the BSA metrics, as shown in Table VIII for SQLi
and Table IX for XSS (the tools are sorted using the BAS
metric). Note that, since the BAS metric is based on the

IEEE TRANSACTIONS ON RELIABILITY 13

informedness metric, the ranking of the tools for the high-
quality scenario is the same of our benchmark.

For all scenarios and classes of vulnerabilities, the values
of the TPR are at least 10 times higher than the values of the
FPR. This shows the importance of identifying the NVLOCs
in production software, to allow characterizing the strengths
and limitations of the tools. In fact, the tools are not reporting
FPs in many of the places where the sensitive sinks are, which
are the places where a tool may find a vulnerability.

Fig. 6 and Fig. 7 present the chart plots (similar to the ones
provided by the OWASP BSA) showing the results of the tools
by scenario for SQLi and XSS, respectively. The order of the
items in the captions stands for the order of the tools ranked
using the BAS metric. The graphs include the average of all
tools. As shown, all tools score above the diagonal line, i.e.,
TPR is greater than FPR.

Table X details the values of our main metrics for SQLi and
XSS vulnerabilities considering the inexistence of scenarios
(without assigning scenarios to the plugins). We observed that,
depending on the class of vulnerability, the same tool comes
first for almost all the metrics: phpSAFE for SQLi and RIPS
for XSS.

Table XI presents the results using the BSA metrics not
considering the scenarios, and Fig. 8 shows the respective
graphs. The results are similar to the results of using our
main metrics, thus phpSAFE is better for SQLi and RIPS for
XSS. We verified that both tools are far above the average
of all tools (see Fig. 8). However, when using scenarios this
distance is much shorter. This means that, without scenarios,
both strengths and limitations of the tools may be masked.

4) Comparing our results with SAMATE and BSA: As
mentioned before, it was not possible to calculate the DR
metric from SAMATE. Therefore, we do not provide ranking
of the tools using this metric. Next, we compare our results
with the remaining SAMATE metrics (precision, F-Measure,
and recall).

The SAMATE recall and F-Measure metrics rank first the
same SATs for all scenarios and classes of vulnerabilities
as our main metrics, with the exception of the low-quality
scenario in which recall ranks a different SAT for both
classes of vulnerabilities and F-Measure ranks a different SAT

TABLE VIII
RANKING OF TOOLS BY SCENARIO AND BAS METRIC: SQLI

Highest-quality High-quality

Tools TPR FPR BAS Tools TPR FPR BAS

WAP 65.3 4.6 60.7 phpSAFE 79.2 5.2 74.0
phpSAFE 38.7 5.7 32.9 WAP 12.7 0.4 12.4
WeVerca 0.0 0.0 0.0 RIPS 12.4 0.2 12.2
RIPS 0.0 0.0 0.0 WeVerca 5.2 0.1 5.1
Pixy 0.0 0.0 0.0 Pixy 4.6 0.0 4.6

Medium-quality Low-quality

RIPS 57.3 5.1 52.2 phpSAFE 72.0 2.8 69.2
phpSAFE 37.1 2.3 34.8 WAP 10.0 0.0 10.0
WAP 27 0.0 27 RIPS 2.0 0.0 2.0
Pixy 20.2 0.6 19.6 WeVerca 0.0 0.0 0.0
WeVerca 7.9 1.5 6.3 Pixy 0.0 0.0 0.0

TABLE IX
RANKING OF TOOLS BY SCENARIO AND BAS METRIC: XSS

Highest-quality High-quality

Tools TPR FPR BAS Tools TPR FPR BAS

RIPS 67.3 2.9 64.3 phpSAFE 63.2 1.5 61.6
phpSAFE 60.7 1.8 58.9 RIPS 55 3.3 51.7
Pixy 41.1 1.4 39.7 WeVerca 23.7 0.9 22.8
WeVerca 26.2 0.5 25.7 Pixy 24.6 2.5 22.1
WAP 13.7 0.6 13.1 WAP 11.9 0.9 10.9

Medium-quality Low-quality

RIPS 75.8 4.9 70.9 RIPS 69.2 2.5 66.6
phpSAFE 40.6 2.7 37.9 phpSAFE 44.8 0.9 43.9
Pixy 30.0 0.6 29.5 WeVerca 13.4 0.2 13.2
WeVerca 26.0 0.2 25.8 WAP 11.4 0.1 11.3
WAP 14.4 0.1 14.3 Pixy 9.4 0.2 9.2

for XSS vulnerabilities. Comparing with our benchmark, the
SAMATE precision metric, for SQLi, ranks the same SATs
for the highest-quality and low-quality scenarios and different
SATs for the other scenarios. For XSS, it ranks the same SAT
for the high-quality scenario and a different SAT for the other
scenarios. The SAMATE precision metric reveals that WAP
is more precise for SQLi, and WeVerva for XSS. However,
unlike our main metric, markedness, the precision should not
be used for ranking the tools as it ignores the P reported by
the tools.

Regarding BSA, the results of ranking the tools using the
BAS metric are similar to the ranking using our metrics,
except in the low-quality scenario and for both SQLi and
XSS, where the ranking of the tools is different. In summary,

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Highest-quality

WAP
phpSAFE
RIPS
Pixy
WeVerca
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - High-quality

phpSAFE
WAP
RIPS
WeVerca
Pixy
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Medium-quality

RIPS
phpSAFE
WAP
Pixy
WeVerca
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Low-quality

phpSAFE
WAP
RIPS
Pixy
WeVerca
Average

Fig. 6. Benchmark SQLi comparison by scenario.

IEEE TRANSACTIONS ON RELIABILITY 14

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Highest-quality

RIPS
phpSAFE
Pixy
WeVerca
WAP
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - High-quality

phpSAFE
RIPS
WeVerca
Pixy
WAP
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Medium-quality

RIPS
phpSAFE
Pixy
WeVerca
WAP
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Low-quality

RIPS
phpSAFE
WeVerca
WAP
Pixy
Average

Fig. 7. Benchmark XSS comparison by scenario.

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi

phpSAFE
RIPS
WAP
Pixy
WeVerca
Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS

RIPS
phpSAFE
Pixy
WeVerca
WAP
Average

Fig. 8. Benchmark SQLi and XSS comparison without scenarios.

the BAS metric does not provide useful information to the
users when they need to choose tools with different security

TABLE X
RANKING OF TOOLS CONSIDERING ALL PLUGINS AND ALL OUR MAIN METRICS

SQLi

Tools Recall Tools Infor. Tools F-M Tools Mark.

phpSAFE 0.59 phpSAFE 0.56 phpSAFE 0.66 WAP 0.84
RIPS 0.27 RIPS 0.24 RIPS 0.38 Pixy 0.72
WAP 0.23 WAP 0.23 WAP 0.37 phpSAFE 0.69
Pixy 0.09 Pixy 0.09 Pixy 0.17 RIPS 0.52
WeVerca 0.05 WeVerca 0.05 WeVerca 0.10 WeVerca 0.39

XSS

RIPS 0.73 RIPS 0.63 RIPS 0.73 WeVerca 0.78
phpSAFE 0.63 phpSAFE 0.48 phpSAFE 0.63 phpSAFE 0.75
Pixy 0.40 Pixy 0.25 Pixy 0.40 RIPS 0.73
WeVerca 0.38 WeVerca 0.23 WeVerca 0.38 WAP 0.72
WAP 0.23 WAP 0.13 WAP 0.23 Pixy 0.70

TABLE XI
RANKING OF TOOLS CONSIDERING ALL PLUGINS AND BAS METRICS

SQLi XSS

Tools TPR FPR BAS Tools TPR FPR BAS

phpSAFE 59.3 3.2 56.2 RIPS 67.1 3.9 63.1
RIPS 26.7 2.5 24.2 phpSAFE 50.2 2.0 48.2
WAP 23.0 0.2 22.9 Pixy 26.1 1.1 25
Pixy 9.5 0.3 9.2 WeVerca 23.7 0.4 23.3
WeVerca 5.3 0.8 4.5 WAP 13.1 0.4 12.7

requirements. In fact, tools with the same BAS might have
different TPRs and FPRs. However, in projects with more
demanding security requirements, the priority may be to find
as many vulnerabilities as possible. On the other hand, for
projects with tight budgets and where the security is not
important, the priority may be to limit the number of results
to observe.

Using as workload all the plugins without distributing them
across the scenarios, leads our metrics and the BAS metric
to rank first the same tools (phpSAFE for SQLi and RIPs
for XSS), except fo the markedness metric. In practice, we
obtained the WAP tool for SQLi and the WeVerca tool for
XSS. Thus, we can conclude that organizing the workload
in scenarios and defining metrics according to their goals is
useful since it allows exploring the capabilities of the tools
in different contexts. For example, code with poor quality
may have unfeasible execution paths, which require more
sophisticated analysis to avoid FPs.

As a final note on the results, we observe that the metrics
for evaluating security tools should be improved, considering,
for example, the inclusion of different weighs for TPs and FPs.
In fact, when we use the recall metric, we are assuming for
TPs and FPs a weight of one and zero, respectively.

VI. BENCHMARKING PROPERTIES AND VALIDATION

The results of running the benchmark show that the pro-
posed approach can be used to successfully rank SATs in
different scenarios. In this section, we discuss the key proper-
ties of the benchmark instantiation for WordPress plugins and
SQLi and XSS vulnerabilities, and discuss the validation of
the proposed process.

A. Discussion on the benchmark properties

To be accepted, any benchmark should fulfill a set of key
properties: representativeness, repeatability, non-intrusiveness,
scalability, portability, and simplicity of use [14] [63].

Representativeness: our workload includes real applications
since it is composed by WordPress plugins widely used in
different scenarios, with real vulnerabilities. However, the
workload across the various scenarios is unbalanced, which
may affect the results in some cases. For example, in the
highest-quality scenario and for SQLi, only two SATs reported
vulnerabilities, which may limit our study. Works using other
tools are needed for improving the characterization of the
vulnerable/non-vulnerable LOCs in the workload. Trust on

IEEE TRANSACTIONS ON RELIABILITY 15

the representativeness of the metrics is increased by previ-
ous works that showed that the different metrics should be
considered for different vulnerability detection scenarios [8]
[64].

Repeatability: SATs with the same settings always produce
the same results as they analyze the static program structure
in a deterministic way, making the results of the benchmark
deterministic. We also verified this property empirically.

Non-intrusiveness: our approach is non-intrusive, as it does
not require any change to the SATs under benchmarking.

Scalability: the workload can be scaled in the number and
in the complexity of the tests, since the load increases pro-
portionally, not exponentially. The benchmark can be applied
without any change to the SATs with different functionalities
and maturity.

Portability: SATs do not need to run the program being
analyzed, so the benchmark can be used for evaluating differ-
ent SATs able to detect SQLi and XSS vulnerabilities in PHP
code, as demonstrated in the experiments. Addressing other
languages and classes of vulnerabilities requires defining a
new workload, following the process proposed.

Simplicity of use: running the benchmark takes three simple
steps: 1) configuring and executing the SATs, 2) comparing
the results with known vulnerable and non-vulnerable LOC,
and 3) calculating the metrics and ranking the tools. These are
quite straightforward, although time consuming in some cases,
due to some amount of manual work involved (to verify new
vulnerabilities).

B. Validate the benchmarking process

To validate our benchmarking approach, we need to validate
its four main components. The scenarios and metrics were
previously validated by Antunes et al. [9]. The procedure is
well-known and follows existing approaches on performance
and dependability benchmarking.

The workload is the component that influences most the
results, so it should be discussed in greater detail. The pro-
posed process to build the workload allows selecting real
applications with known vulnerabilities. The instantiation of
the benchmarking approach and the results of the experiments
show that it is feasible, but has some limitations/difficulties.
The following paragraphs discuss the main issues:

Identifying and collecting vulnerable applications: since
there are many plugins with vulnerabilities, the likelihood
of finding plugins with documented vulnerabilities is very
high. In fact, results showed that our approach allows the
identification of many vulnerable plugins with available source
code. However, we also observed that in the WPVD there are
many vulnerabilities with incomplete documentation, which is
needed to evaluate SATs, such as the vulnerable file, the LOC,
the vulnerable variable, and PoC. In fact, due to this lack of
data, the initial number of plugins identified was dramatically
reduced from 273 to 134. This problem can be minimized by
using more vulnerability databases.

Assigning applications to scenarios: we observed that our
workload is unbalanced concerning the number of plugins by
scenario. However, this was expected as the number of plugins

collected (134) is not very high and the real percentages
of plugin with five or one stars is very low. Moreover, the
distribution of the plugins by scenario seems to follow a
pattern similar to a normal distribution. Adding more plugins
to the workload could help mitigating this issue.

Identifying VLOCs and NVLOCs: the process used to iden-
tify the lists of VLOCs and NVLOCs requires updating values
during the process of benchmarking when the tools report
previously unknown vulnerabilities. This occurred for 2 out
3 tools, and the total number of manual reviews required was
251 (WAP: 168; WeVerca: 83). Therefore, as the number of
benchmarked tools increases, the number of required reviews
may decrease due the overlap of vulnerability detection be-
tween the tools. Moreover, none of the tools reported vulner-
abilities in LOCs outside the lists of NVLOCs and VLOCs.
This means that the process of identifying the NVLOCs can
be trusted.

VII. CONCLUSION

In this paper, we addressed the problem of choosing ad-
equate SATs for vulnerability detection in web applications.
We proposed an approach to design benchmarks for evaluating
such SATs considering different levels of criticality. Our
approach combines source code metrics to automatically or-
ganize the workload in four scenarios of increasing criticality.
Each scenario uses different metrics to rank the tools. To
evaluate the approach, we created a benchmark for WordPress
plugins and tested it with five free SATs searching for XSS
and SQLi vulnerabilities in 134 WordPress plugins with real
vulnerabilities, developed in PHP.

The experimental results showed that the best tool changes
from one scenario to another and also depends on the class of
vulnerabilities being detected. Our novel benchmark approach
is a valuable tool to help project managers choosing the best
SAT according to their needs and the resources available.

The comparison of the results using our metrics and the
metrics from SAMATE and BSA reveals that the use of the
same metrics for all scenarios makes more difficult the choice
of the most appropriated tool for a project with specific re-
quirements of security. For instance, the DR and BAS metrics
may mask the capabilities of the tools when a tool reports
FPs. Therefore, the metrics should be chosen according to
the vulnerability detection scenario. Moreover, we found that
identifying the TPs in the workload helps to better characterize
the tools. However, since the number of negative instances in
real applications might be much higher than the number of
positive instances, the metrics should be improved to balance
the weight of the TPs and FPs in the computation of the
metrics.

Future work includes two main directions. First, we would
like to improve our workload by adding more plugins in order
to provide a balanced set of plugins between scenarios. Sec-
ond, we would like to investigate the code patterns that SATs
are not able to analyze. The goal is to understand the detection
capabilities and the demerits of the tools (data/control/path
flows, dealing with OOP constructs, complex string replace
operations, etc.), to provide means to improve them.

IEEE TRANSACTIONS ON RELIABILITY 16

REFERENCES

[1] http://www.acunetix.com/vulnerability-scanner/, 2015-08-10.
[2] “Annual Consumer Studies,” http://www.ponemon.org/, Ponemon Insti-

tute, 2015.
[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[4] V. Okun, W. F. Guthrie, R. Gaucher, and P. E. Black, “Effect of
static analysis tools on software security: preliminary investigation,”
in Proceedings of the 2007 ACM Workshop on Quality of Protection.
ACM, 2007, pp. 1–5.

[5] A. Doupe, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Proceedings of the
7th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 111–131.

[6] http://samate.nist.gov/, 2015-06-12.
[7] https://www.owasp.org/index.php/Benchmark, 2016-04-10.
[8] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug finders:

Test and measurement of static code analyzers,” in Proceedings of the
First International Workshop on Complex faUlts and Failures in LargE
Software Systems, ser. COUFLESS ’15. Florence, Italy: IEEE Press,
2015, pp. 14–20.

[9] N. Antunes and M. Vieira, “On the metrics for benchmarking vulner-
ability detection tools,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2015, pp. 505–
516.

[10] https://w3techs.com/technologies/overview/content management/all.
[11] “WP Template.com,” http://www.wptemplate.com/tutorials/safety-and-

security-of-wordpress-blog-infographic.html, 2016-05-01.
[12] “Website hacked trend report 2016-Q1,” https://sucuri.net/website-

security/Reports/Sucuri-Website-Hacked-Report-2016Q1.pdf, 2016.
[13] T. Gigler, B. Glas, N. Smithline, and A. van der Stock, “OWASP Top

10: The ten most critical web application security risks – RC2,” OWASP
Foundation, Tech. Rep., 2017.

[14] C. Ballinger, “TPC-D: Benchmarking for Decision Support,” in The
Benchmark Handbook for Database and Transaction Systems (2nd
Edition), J. Gray, Ed. Morgan Kaufmann, 1993.

[15] N. L. de Poel, F. B. Brokken, and G. R. R. de Lavalette, “Automated
security review of PHP web applications with static code analysis,”
Master’s thesis, vol. 5, 2010.

[16] M. Vieira, H. Madeira, K. Sachs, and S. Kounev, “Resilience benchmark-
ing,” Resilience Assessment and Evaluation of Computing Systems, pp.
283–301, 2012.

[17] S. Neuhaus and T. Zimmermann, “Security trend analysis with cve topic
models,” in Software reliability engineering (ISSRE), 2010 IEEE 21st
international symposium on. IEEE, 2010, pp. 111–120.

[18] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of
static code analysis to detect security vulnerabilities,” Information and
Software Technology, vol. 68, pp. 18–33, Dec 2015.

[19] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, ser. SSYM’05, 2005, pp.
18–18.

[20] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in Security and Privacy, 2006
IEEE Symposium on, May 2006, pp. 6 pp.–263.

[21] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on. IEEE, 2008, pp. 171–180.

[22] W. Landi, “Undecidability of static analysis,” ACM Letters on
Programming Languages and Systems (LOPLAS), vol. 1, no. 4, pp.
323–337, 1992.

[23] J. Fonseca, M. Vieira, and H. Madeira, “The web attacker perspective -
a field study,” in Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on, Nov 2010, pp. 299–308.

[24] J. Fonseca and M. Vieira, “A practical experience on the impact of
plugins in web security,” in 2014 IEEE 33rd International Symposium
on Reliable Distributed Systems (SRDS). IEEE, 2014, pp. 21–30.

[25] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira,
“On combining diverse static analysis tools for web security: An empir-
ical study,” in 2017 13th European Dependable Computing Conference
(EDCC), Sept 2017, pp. 121–128.

[26] P. E. Black, M. Kass, M. Koo, and E. Fong, “Source code security
analysis tool functional specification version 1.1,” February 2011.

[27] J. A. Kupsch and B. P. Miller, “Manual vs. automated vulnerability
assessment: A case study,” in The 1st International Workshop on
Managing Insider Security Threats (MIST 2009), 2009.

[28] “PhpMetrics.org,” http://www.phpmetrics.org/, 2016-10-03.
[29] “PHPMD - PHP mess detector,” https://phpmd.org/, 2017-01-06.
[30] “Sonarqube.org,” http://www.sonarqube.org/, 2016-11-03.
[31] “Software quality enhancement,” http://www.squale.org/, 2016-11-03.
[32] Ö. F. Arar and K. Ayan, “Deriving thresholds of software metrics to

predict faults on open source software: Replicated case studies,” Expert
Systems with Applications, pp. 106–121, Nov.

[33] M. Schroeder, “A practical guide to object-oriented metrics,” IT
Professional, vol. 1, no. 6, pp. 30–36, Nov 1999.

[34] M. Sankar and A. Irudhyaraj, “Software Quality Attributes for Se-
cured Web Applications,” International Journal of Engineering Science
Invention, vol. 3, no. 7, pp. 19–27, 2014.

[35] D. Nabil, A. Mosad, and H. A. Hefny, “Web-Based Applications
quality factors: A survey and a proposed conceptual model,” Egyptian
Informatics Journal, no. 3, pp. 211–217.

[36] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[37] “pdepend.org,” https://pdepend.org/, 2016-11-03.
[38] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds

from benchmark data,” IEEE International Conference on Software
Maintenance, ICSM, 2010.

[39] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-Based Ag-
gregation of Metrics to Ratings,” in 2011 Joint Conference of
the 21st International Workshop on Software Measurement and
the 6th International Conference on Software Process and Product
Measurement. IEEE, nov, pp. 20–29.

[40] A. H. Watson, T. J. Mccabe, and D. R. Wallace, “Special publi-
cation 500-235, structured testing: A software testing methodology
using the cyclomatic complexity metric,” in U.S. Department of
Commerce/National Institute of Standards and Technology, 1996.

[41] P. Oliveira, F. P. Lima, M. T. Valente, and A. Serebrenik, “RTTool:
A Tool for Extracting Relative Thresholds for Source Code Metrics,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, no. c. IEEE, Sep 2014, pp. 629–632.

[42] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code
quality benchmarking for improving software maintainability,” Software
Quality Journal, vol. 20, no. 2, pp. 287–307, 2012.

[43] J. P. Correia and J. Visser, “Certification of technical quality of software
products,” in Proc. of the Int. Workshop on Foundations and Techniques
for Open Source Software Certification, 2008, pp. 35–51.

[44] “Software improvement group (sig),” https://www.sig.eu, January 2017.
[45] P. E. Black and E. N. Fong, Gaithersburg, MD, Tech. Rep.
[46] J. Kistowski, J. A. Arnold, K. Huppler, P. Cao, and J. L. Henning,

“How to build a benchmark,” in ICPE 2015 - Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, Feb
2015.

[47] D. M. Powers, “Evaluation evaluation a Monte Carlo study,” arXiv
preprint arXiv:1504.00854, 2015.

[48] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for mea-
suring maintainability,” in Quality of Information and Communications
Technology, 2007. QUATIC 2007. 6th International Conference on the,
Sept 2007, pp. 30–39.

[49] W. Hu, T. Loeffler, and J. Wegener, “Quality model based on ISO/IEC
9126 for internal quality of MATLAB/Simulink/Stateflow models,” in
Industrial Technology (ICIT), 2012 IEEE International Conference on.
IEEE, 2012, pp. 325–330.

[50] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[51] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Syst. J., vol. 13, no. 2, pp. 115–139, Jun. 1974.

[52] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, Jan 2002.

[53] I. Bojanova, P. E. Black, Y. Yesha, and Y. Wu, “The bugs framework
(BF): A structured approach to express bugs,” in 2016 IEEE
International Conference on Software Quality, Reliability and Security,
QRS 2016, Vienna, Austria, August 1-3, 2016, 2016, pp. 175–182.
[Online]. Available: https://doi.org/10.1109/QRS.2016.29

[54] https://wordpress.org/plugins/, 2016-12-29.
[55] P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis

tool for OOP web application plugins,” in 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2015, June 22-25, 2015, pp. 299–306.

IEEE TRANSACTIONS ON RELIABILITY 17

[56] “WPScan Vulnerability Database,” https://wpvulndb.com/, 2015-10-26.
[57] https://github.com/pjcnunes/ISSRE2017.
[58] J. Dahse, G. Horst, and T. Holz, “Simulation of built-in PHP features

for precise static code analysis,” no. February, pp. 23–26, 2014.
[59] I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and

correction of web application vulnerabilities using data mining to predict
false positives,” in Proceedings of the 23rd International Conference on
World Wide Web, ser. WWW ’14. ACM, 2014, pp. 63–74.

[60] D. Hauzar and J. Kofron, “Framework for Static Analysis of PHP Appli-
cations,” in 29th European Conference on Object-Oriented Programming
(ECOOP 2015), ser. Leibniz International Proceedings in Informatics
(LIPIcs), J. T. Boyland, Ed., vol. 37. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 689–711.

[61] J. Dahse, N. Krein, and T. Holz, “Code Reuse Attacks in PHP:
Automated POP Chain Generation,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14, 2014, pp. 42–53.

[62] F. G. G. Meade, “CAS Static Analysis Tool Study - Methodology,”
https://samate.nist.gov/docs/CAS 2011 SA Tool Method.pdf, 2011.

[63] S. Heckman and L. Williams, “On Establishing a Benchmark for Evalu-
ating Static Analysis Alert Prioritization and Classification Techniques,”
Proceedings of the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 41–50, 2008.

[64] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabilities in
open-source projects to assist code audits,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. USA: ACM, 2015, pp. 426–437.

Paulo Nunes is an Adjunct Professor with the Department of Computer
Science, Polytechnic Institute of Guarda (IPG), since 1998. He is, since 2008,
a researcher with the Research Unit for Inland Development (UDI) of the IPG,
and since 2014, a research student with the Centre for Informatics and Systems
of the University of Coimbra (CISUC). Since 2014 he is a PhD Student in a
Doctoral Program in Information Science and Technology at the University
of Coimbra.

Ibéria Medeiros is an Assistant Professor in the Department of Informatics,
at the Faculty of Sciences of University of Lisbon. She is a member of the
Large-Scale Informatics Systems (LASIGE) Laboratory, and the Navigators
research group. She holds a PhD in Computer Science by the Faculty of
Sciences of University of Lisbon. She has been participating in SEGRID
and DiSIEM european projects. Her research interests are concerned with
software security, source code static analysis, vulnerability detection, data
mining and machine learning, and security. More information about her at
http://www.di.fc.ul.pt/∼imedeiros/.

José C. Fonseca received his PhD in Informatics Engineering from the
University of Coimbra in 2011. Since 2005, he has been with the CISUC as
a researcher. He teaches computer related courses in the Polytechnic Institute
of Guarda since 1993. He is the author or co-author of more than two dozen
papers in refereed conferences and journals. His research on vulnerability and
attack injection was granted with the DSNs William Carter Award of 2009,
sponsored by the IEEE Technical Committee on Fault-Tolerant Computing
and IFIP Working Group on Dependable Computing and Fault Tolerance (WG
10.4).

Nuno Ferreira Neves is a Full Professor at the Department of Computer
Science, Faculty of Sciences of the University of Lisboa. Currently, he is Head
of the Department. He leads the Navigatorss research group and he is on the
executive board of the LASIGE research unit. His main research interests are
in security and dependability aspects of distributed systems. Currently, he is
principal investigator of the SUPERCLOUD and SEGRID European projects,
and he is involved in projects BiobankClouds and Erasmus+ ParIS. His work
has been recognized in several occasions, for example with the IBM Scientific
Prize, and the William C. Carter award. He is on the editorial board of the
International Journal of Critical Computer-Based Systems. More information
about him can be found at http://www.di.fc.ul.pt/∼nuno/.

Miguel Correia is an Associate Professor at Instituto Superior Técnico (IST)
of Universidade de Lisboa (ULisboa), and a Senior Researcher at INESC-ID
in the Distributed Systems Group (GSD). He has been involved in several
international and national research projects related to cybersecurity, including
the SafeCloud, PCAS, TCLOUDS, ReSIST, CRUTIAL, and MAFTIA Euro-
pean projects. He has more than 150 publications and is Senior Member of
the IEEE. More information about him at http://www.gsd.inesc-id.pt/∼mpc/

Marco Vieira is a Full Professor at the University of Coimbra, Portugal. His
interests include dependability and security assessment and benchmarking,
fault injection, software processes, and software quality assurance, subjects
in which he has authored or co-authored more than 200 papers in refereed
conferences and journals. He has participated and coordinated several research
projects, both at the national and European level. Marco Vieira has served
on program committees of the major conferences of the dependability area
and acted as referee for many international conferences and journals in the
dependability and security areas.

